USTHB

Faculté d'Électronique et d'Informatique Département d'Informatique Master 2 Systèmes Informatiques Intelligents Représentation des Connaissances et Raisonnement 2

> TD 4-TP2 Contrôleurs flous

Année Universitaire : 2022-2023

Exercice 1:

Considérons un système de contrôle des risques de la cybercriminalité (RC) en fonction de trois paramètres : la technologie de la cyber-sécurité (TC), les normes de la cyber-sécurité (NC) et la portée de l'information (PI). Ces différents paramètres sont spécifiés par les ensembles flous suivants:

- Paramètre d'entrée **TC**:

Avancée (AV)	Triangle (20,35,45)
Acceptable (AC)	Triangle (35,45,60)
Insuffisante (IN)	Triangle (45,60,80)

- Paramètre d'entrée NC:

Dans les normes(DN)	Trapèze (9,24,40,55)
Hors normes (HN)	Trapèze (40,55,60,70)

- Paramètre d'entrée **PI** :

Très grande (TG)	Trapèze (5,10,15,20)
Grande (GR)	Trapèze (15,20,25,30)
Moyenne (MO)	Trapèze (25,30,35,40)
Faible (FA)	Trapèze (35,40,45,50)

- Paramètre de sortie **RC**:

très fort (TF)	Triangle (-80,-50,-10)
Fort (FO)	Triangle (-50,-10,10)
Moyen (MO)	Triangle (-10,10,40)
Faible (FA)	Triangle (10,40,70)

La matrice d'inférence est la suivante:

NC		DN			HN	
	AV	AC	IN	AV	AC	IN
TC						
PI						
TG	FA	FA	FA	MO	MO	MO
GR	FA	MO	MO	MO	FO	FO
MO	MO	MO	MO	FO	FO	TF
FA	FO	FO	FO	TF	TF	TF

- a- Spécifiez les différentes étapes de la conception d'un contrôleur flou.
- b- Appliquez chaque étape au problème donné en précisant les connaissances utilisées.
- c- Simuler le fonctionnement du contrôleur avec les paramètres suivants : TC=52; NC=42; PI=17

Exercice 2:

Contrôleur flou : Ajustement d'une vanne dans une usine de fonderie

Il s'agit de régler un paramètre \mathbf{u} servant au débit d'une vanne entre un réceptacle contenant du métal en fusion, et un deuxième bassin dont le niveau est mesuré par la hauteur \mathbf{h} . Ce dernier se déversant dans un moule.

Le paramètre qualifiant **h** est défini dans l'intervalle de 75 cm à 85 cm.

Le paramètre caractérisant **dh** est défini entre -0,9 et 1,2 cm/s.

La commande **u** prend les valeurs entre -1et 1.

Les règles d'inférence sont comme suit :

h petit et dh très négatif \rightarrow u est haut

h petit et dh positif \rightarrow u est haut

h moyen et dh très négatif \rightarrow u est haut

h moyen et dh positif \rightarrow u est bas

h haut et dh très négatif \rightarrow u est bas

h haut et dh positif \rightarrow u est bas

h petit et dh négatif →u est haut

h petit et dh très positif → u moyen-haut

h moyen et dh négatif \rightarrow u est haut

h moyen et dh très positif \rightarrow u est bas

h haut et dh négatif \rightarrow u est bas

h haut et dh très positif \rightarrow u est bas

Les fonctions d'appartenance correspondantes aux différents paramètres sont définies par :

- paramètre d'entrée **h**:

]	Petit	(75,77,78,79)
]	Moyen	(78,79,81,83)
]	Haut	(80,83,85,85)

- paramètre d'entrée **dh**:

Très négatif	(-0.9, -0.7, -0.3)
Négatif	(-0.4,0,0.2)
Positif	(0,0.4,0.6)
Très positif	(0.5, 0.8, 0.8)

- paramètre de sortie **u**:

Bas	(-1,-0.4,-0.2)
Moyen_haut	(-0.4,0,0.8)
Haut	(0.2,0,8,1)

- a- Spécifiez les différentes étapes de la conception d'un contrôleur flou.
- b- Appliquez chaque étape au problème donné en précisant les connaissances utilisées. Quelle est la spécificité de la matrice d'inférence ?
- c- Simuler le fonctionnement du contrôleur avec les paramètres d'entrée suivants : h=81.5 et dh=0.1.

Exercice 3:

Considérons le problème de la prise en charge de l'épidémie du coronavirus (EC) en prenant en compte les paramètres suivants : le développement d'outils de diagnostic (OD), la connaissance du virus (CV) et le développement de vaccins (DV).

Ces différents paramètres sont spécifiés par les ensembles flous suivants:

- Paramètre d'entrée **OD** :

Avancé (AV)	Triangle (30,45,70)
Acceptable	Triangle (10,30,45)
(AC)	
Insuffisant (IN)	Triangle (-20,10,30)

- Paramètre d'entrée CV:

Non Maitrisée (NM)	Trapèze (20,40,55,70)
Maitrisée (MT)	Trapèze (55,70,90,110)

- Paramètre d'entrée **DV** :

Très important (TI)	Trapèze (90,110,115,120)
Important (IM)	Trapèze (65,80,90,110)
Moyen (MO)	Trapèze (32,50,65,80)
Faible (FA)	Trapèze (5,15,32,50)

- Paramètre de sortie **EC** :

Moyenne (MO)	Singleton (20,35)
Forte (FO)	Singleton (35,60)
Elevée (EL)	Singleton (50,80)

La matrice d'inférence est la suivante:

CV		NM				MT		
DV	FA	МО	IM	TI	FA	MO	IM	TI
DV \ OD								
IN	MO	MO	MO	MO	MO	MO	FO	FO
AC	MO	MO	FO	FO	FO	FO	EL	EL
AV	FO	FO	EL	EL	EL	EL	EL	EL

- d- Spécifiez les différentes étapes de la conception d'un contrôleur flou.
- e- Appliquez chaque étape au problème donné en précisant les connaissances utilisées.
- f- Simuler le fonctionnement du contrôleur avec les paramètres suivants : OD=20 ; CV=60; DV=100

TP2:

En utilisant la "Fuzzy Toolbox" de Matlab, concevez et implémentez un contrôleur flou.